Search results for "Cone metric spaces"
showing 7 items of 7 documents
MR2684111 Kadelburg, Zoran; Radenović, Stojan; Rakočević, Vladimir Topological vector space-valued cone metric spaces and fixed point theorems. Fixed…
2011
Recently, Huang and Zhang [\emph{Cone metric spaces and fixed point theorems of contractive mappings}, J. Math. Anal. Appl., \textbf{332} (2007), 1468 -1476] defined cone metric spaces by substituing an order normed space for the real numbers and proved some fixed point theorems. Let $E$ be a real Hausdorff topological vector space and $P$ a cone in $E$ with int\,$P\neq \emptyset$, where int\,$P$ denotes the interior of $P$. Let $X$ be a nonempty set. A function $d : X \times X\to E$ is called a \emph{tvs}-cone metric and $(X, d)$ is called a \emph{tvs}-cone metric space, if the following conditions hold: (1) $\theta \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)= \theta$ if and only if $x…
Nonlinear quasi-contractions of Ciric type
2012
In this paper we obtain points of coincidence and common fixed points for two self mappings satisfying a nonlinear contractive condition of Ciric type. As application, using the scalarization method of Du, we deduce a result of common fixed point in cone metric spaces.
Common fixed points for self mappings on compact metric spaces
2013
In this paper we obtain a result of existence of points of coincidence and of common fixed points for two self mappings on compact metric spaces satisfying a contractive condition of Suzuki type. We also present some examples to illustrate our results. Moreover, using the scalarization method of Du, we deduce a result of common fixed point in compact cone metric spaces.
MR2670689 Rezapour, Shahram; Khandani, Hassan; Vaezpour, Seyyed M. Efficacy of cones on topological vector spaces and application to common fixed poi…
2011
Recently, Huang and Zhang defined cone metric spaces by substituting an order normed space for the real numbers and proved some fixed point theorems. For fixed point results in the framework of cone metric space see, also, Di Bari and Vetro [\textit{$\varphi$-pairs and common fixed points in cone metric spaces}, Rend. Circ. Mat. Palermo \textbf{57} (2008), 279--285 and \textit{Weakly $\varphi$-pairs and common fixed points in cone metric spaces}, Rend. Circ. Mat. Palermo \textbf{58} (2009), 125--132]. Let $(E,\tau)$ be a topological vector space and $P$ a cone in $E$ with int\,$P\neq \emptyset$, where int\,$P$ denotes the interior of $P$. The authors define a topology $\tau_p$ on $E$ so tha…
$varphi$-pairs and common fixed points in cone metric spaces
2008
In this paper we introduce a contractive condition, called $\varphi \textrm{-}pair$, for two mappings in the framework of cone metric spaces and we prove a theorem which assures existence and uniqueness of common fixed points for $\varphi \textrm{-}pairs$. Also we obtain a result on points of coincidence. These results extend and generalize well-known comparable results in the literature.
Invariant approximation results in cone metric spaces
2011
Some sufficient conditions for the existence of fixed point of mappings satisfying generalized weak contractive conditions is obtained. A fixed point theorem for nonexpansive mappings is also obtained. As an application, some invariant approximation results are derived in cone metric spaces.
Common fixed points in cone metric spaces for CJM-pairs
2011
Abstract In this paper we introduce some contractive conditions of Meir–Keeler type for two mappings, called f - M K -pair mappings and f - C J M -pair (from Ciric, Jachymski, and Matkowski) mappings, in the framework of regular cone metric spaces and we prove theorems which guarantee the existence and uniqueness of common fixed points. We give also a fixed point result for a multivalued mapping that satisfies a contractive condition of Meir–Keeler type. These results extend and generalize some recent results from the literature. To conclude the paper, we extend our main result to non-regular cone metric spaces by using the scalarization method of Du.